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The instantaneous velocity vector fields which surround the coherent structures of 
Perry & Lim (1978) in coflowing jets and wakes have been successfully measured and 
related to the smoke patterns for Reynolds numbers of order 1000. By the use of 
critical point theory, a qualitative description of the three-dimensional flow field can 
be made and is applied to the simplest structures which were classified by Perry & 
Lim. From these results, the convection of smoke and vorticity from the source and 
the entrainment properties of the structures are discussed. 

1. Introduction 
Recently Perry & Lim (1978) studied forced periodic coflowing jets and wakes a t  

Reynolds numbers of the order 1000. By laterally perturbing sinusoidally a glass tube 
from which smoke was issuing into an outer coflowing external stream, they found 
that the naturally occurring random eddying motions could be locked in with the 
perturbing frequency. When viewed under stroboscopic light of the correct frequency, 
the eddy structures appeared frozen in time. The geometry of the three-dimensional 
smoke patterns could be examined in great detail using strobed laser beams. From 
this work a classification of the simplest occurring structures was made and an updated 
version is shown in figure 1.  The structures can be double sicied or single sided. The 
single-sided ones are the result of either buoyancy effects or how the vorticity has been 
generated a t  the source. I n  the case of wakes the eddies point downstream and in the 
case of jets the eddies point upstream. It was conjectured that these patterns might 
be similar to the large-scale structures of fully turbulent jets and wakes. The results of 
Cantwell (1975) on the turbulent near wake ofa circular cylinder a t  a Reynolds number 
of 140000 suggest this to be true. Recent work carried out at Melbourne by Perry & 
Watmuff (1981) on the wakes behind three-dimensional bodies a t  high Reynolds 
numbers also confirmed this sugestion. The fine-scale motions which are superimposed 
on the large-scale motions are apparently ‘decoupled’ to some extent and the broad 
features of the large-scale motions are not greatly altered. 

The work of Perry & Lim was confined to an examination of the smoke patterns. 
These patterns give an idea of the vorticity distribution since the outer edge of the 
smoke is a vortex sheet (at least before viscous diffusion becomes significant). It has 
been the aim of many people to measme an entire instantaneous velocity vector field 
surrounding eddying motions and to relate this field with the smoke patterns (e.g. see 
Davies & Yule 1975 and Falco 1977). The fact that the eddy structures of Perry & Lim 
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FIGURE 1.  Classification of simple coflowing wake and jet structukes. Flow issuing 
from tube. Only sections contained in centre-plane are shown. 

can be made perfectly periodic in time affords a unique opportunity to make such 
measurements in great detail using a conditional sampling technique based on the phase 
of the disturbing oscillation. By means of an on-line digital computer, an entire vector 
flow field on the plane of symmetry of the structures can be obtained from hot-wire 
measurements in a time of approximately seven minutes. 

One of the problems with velocity fieIds is that the geometry depends on the velocity 
of the observer and it would be better to use an invariant quantity. Vorticity is such a 
quantity but is extremely difficult to measure. Cantwell (1978) and Cantwell, Coles & 
Dimotakis (1978) applied similarity transformations to measured flow fields to obtain 
invariant patterns. In  any case, even a qualitative knowledge of the instantaneous 
vector flow fields, as seen by an observer moving with the structures, gives an insight 
into the entrainment processes and the large-scale transport processes. 

Three-dimensional flow fields are extremely complex and are most difficult to 
describe in detail. However, there are certain features of flow fields known as ‘critical 
points’ which form the salient features of these patterns. Once these critical points are 
located and identified, all the essential features of the flow geometry can be deduced. 
Critical-point theory (also known as the ‘ phase-plane ’ or ‘phase-space’ method) was 
applied by Oswatitsch (1958), Davey (1961) and Lighthill (1963) to viscous flow close 
to a rigid boundary. Smith (1972) applied this theory to conical flows. Perry & Fairlie 
(1974, 1975) extended the approach to inviscid rotational flow close to and away from 
boundaries. Hunt et al. (1978) extended the work of Perry & Fairlie and made studies 
of flow around obstacles attached to surfaces. Cantwell et al. (1978) applied the critical- 
point theory to the geometry of turbulent spots, 

The flow field surrounding the structures studied by Perry & Lim (1978) are reported 
here and are described with the aid of critical-point theory. 
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FIGURE 2 .  (a)  Constant vorticity inviscid centre; ( b )  focus; ( c )  constant vorticity saddle a and b 
are eigenvectors ; (d )  dislocated saddle ; ( e )  dislocated saddle with a finite-thickness sheet of 
thickness 6; ( f )  axisymmetric stagnation point ; (9)  general three-dimensional stagnation point; 
(h) two-dimensional stagnation point. Isobars are shown in the 2, y plane for (f) ,  (9 )  and (h). 

2. Critical-point theory 
A critical point is a point in a flow field in which the trajectory slope (or instan- 

taneous streamline slope) is indeterminate. The patterns and their properties are 
obtained from the spacewise linearized solution of the Navier-Stokes and continuity 
equations. For the work here, the inviscid critical points of Perry & Fairlie (1974) need 
to be extended. 

In  figure 2 ( a )  is shown a centre (shaded region). In  three dimensions the trajectories 
can ‘in the large’ spiral in but must asymptote to closed trajectories as the centre is 
approached. The vorticity vector is orthogonal to the plane containing the trajectories 
and the flow is locally two-dimensional close to the centre. A centre corresponds with 
a pressure minimum. It is assumed that the vorticity is constant in space and time 
close to the centre and therefore vortex stretching is small. 

If vortex stretching is included the pattern becomes unsteady and we have a focus 
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as shown in figure 2 (b ) .  For all cases considered here, the effect of vortex stretching is 
small. 

Figure 2 (c )  shows a constant vorticity saddle and it can be seen that the eigenvectors 
labelled aand b are non-orthogonal. Again the flow is locally two-dimensional and, if the 
flow is steady, saddles correspond to pressure maxima. For all cases considered so far 
the second derivatives of kinematic pressure P,, = P, and the isobara are concentric 
cylinders and pressure varies parabolically with radius. The angle 0 of the eigenvectors 
shown @figure 2 (c) is given by tan 0 = 2 J( -Psz)/v, where 7 is the vorticity. 

In  figure 2 ( d )  we have a new type of critical point which will be referred to as a 
dislocated saddle. Such a critical point sits on a vortex sheet and the ‘dislocation’ is 
possible because of the discontinuity at the sheet. Irrotational saddles sit on either side 
of the sheet. The flow pattern is unsteady since the sheet of spacially uniform strength 
is being stretched in a direction acrass the filaments and the sheet strength diminishes 
with time. The velocity field on either side of the sheet is given by 

u = ax T &m0e-at, w = - az, (1) 

where u and w are the x and z velocity components and a is invariant with time and is 
given by a = J--PZz = J-e2. The minus and plus sign in equation (1) corresponds 
with regions (1) and (2) shown in figure 2 (d) respectively. Again the isobars are con- 
centric cylinders about the origin 0 and correspond with a pressure maximum. Also E~ 

is the dislocation distance E in figure 2 (d) when t = 0. Equation (1) represents a piece- 
wise linearized solution of the Navier-Stokes equation and is consistent with the con- 
servation of angular momentum of particles within the sheet. As the sheet is stretched, 
the Fwo saddles approach each other exponentially and this irregular critical point 
ultimately becomes a regular irrotational saddle with orthogonal eigenvectors. If a 
finite thickness sheet is assumed, then, close to 0, a regular constant vorticity critical 
point is formed as shown in figure 2 ( e )  which is the same as in figure 2 (c). This, in the 
large, would merge into the pattern shown in figure 2 (d). 

Some further critical points which are needed and which were not discussed by 
Perry & Fairlie (1  974) are the three-dimensional irrotational node-saddle combinations 
shown in figures 2 ( f ) ,  (9) and (h). By redoing the analysis of Perry & Fairlie for 
irrotational flow, these solutions occur. All eigenvector planes are orthogonal and in 
figure 2 (f) we have an axisymmetric stagnation point with a star node in the x, y plane. 
Figure 2 (9) shows a general node in the x, y plane and figure 2 (h)  is the two-dimensional 
stagnation point flow. The shape of the node is determined by external far-field 
boundary conditions. The isobars in general are ellipsoids but are cylindrical in 
figure 2 (h) . 

3. Experimental procedure and results 
Velocity fields of coflowing wakes have been measured using crossed hot wires and 

conditionally sampling the data on the basis of phase. Figure 3 shows the method of 
data sampling. A vertical traverse of the structures was made at their plane of sym- 
metry. A picture could be produced of the instantaneous vector field a t  a given phase 
by assuming that horizontal distances are time like. By traversing at two stations one 
wavelength apart, ratios of length and velocity scales can be found from the temporal 
mean profiles. Also the spreading angles of the structures could be measured from 
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FIGURE 3. System used for data sampling coflowing jets and wakes. 
HWA means hot-wire anemometer. 

photographs. This information can be used so that the plots can be distorted by linear 
weighting factors which give plots which correspond to the geometry of the smoke 
pictures. Details of the hot-wire anemometry and data reduction are given in Lim 
(1979). Signals from the wires were scaled by a dynamic matching procedure. Since 
the tunnel velocities were very low (typically 0.5 to 2 m s-l) it was necessary to use the 
vortex-shedding method of Roshko (1954) for the purpose of measuring the tunnel 
velocity during the static calibration of the hot wires. 

Figure 4 (plate 1 )  shows a single-sided coflowing wake (negatively buoyant wake) 
together with the phased-averaged vector field. Because these structures are so 
periodic in time, only ten data points were averaged for each point in the flow field. The 
structures remained steady only for a limited time (about seven minutes). They 
tended to drift as the smoke tank emptied. It was therefore difficult to register the 
patterns precisely with the smoke and a more rapid data sampling method is needed. 
The phase velocity U4 of the observer was calculated from U4 = fh, where f is the 
frequency of shaking and h is the wavelength of the structures. A small vertical down- 
ward phase velocity was introduced, 

where s is the vertical distance the measured mean velocity defect peak shifted down- 
ward over one wavelength h of the structures. Although these structures grow and 
develop with streamwise distance, it  was found that the wavelength h was essentially 
constant. 
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FIGURE 5. (a) Geometry of negatively buoyant wake structure as deduced from Perry & Lim 
(1978). ( b )  Streamline pattern deduced from figure 4 (a). Separatrices are shown in as heavy lines. 
8, saddles; C ,  centres; B, singular trajectory. 
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FIGURE 6. (a) Two-dimensional flow field generated by a vortex pair relative to an observer 
moving with the pair. ( b )  conjectured pattern of projections of vectors on cross-flow plane of 
structures given in figure 5 .  (c),  (d )  conjectured patterns on or near the surface of the smoke. 
( c )  view from above, (d )  view from below. Vortex sheet assumed to have zero thickness (see text). 

Figure 5(a )  shows the geometry of the structures as deduced from Perry & Lirn 
(1978). The initially cylindrical vortex tube is folded and deformed without any holes 
or bifurcations. Assuming that the structures when viewed by an observer moving at  
the correct convection velocity are quasi-steady the critical points discussed in 3 2 can 
be identified. Centres and dislocated saddles are apparent although viscous diffusion 
and slight phase jitter has caused these saddles to have the ‘smeared out ’ appearance 
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FrQuRE 8. (a) Smoke geometry of a simple neutrally buoyant wake structure (no split eddies) 
as deduced from Perry & Lim (1978). ( b )  Streamline pattern deduced from figure 7 ( b ) .  Separatrices 
are shown in as heavy lines. 

shown in figure 2 ( e ) .  The separatrices (trajectories which emanate from saddles) are 
shown heavy and divide the pattern up into zones. 

Above these structures there exists a singular trajectory labelled G which forms an 
asymptote for neighbouring trajectories. This singular trajectory is the intersection 
of a stream surface with the plane of symmetry and by continuity one can deduce 
what the projected flow pattern looks like in the end view. These structures have a 
pattern in the end view similar to that of two trailing vortices. If the observer 
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FIGURE 9. (a) Negatively buoyant wake for flow from left to right. For positively buoyant wake, 
simply reflect figure about a horizontal axis. If streamwise growth rate is ignored, figure also 
corresponds to negatively buoyant jet for flow from tube from right to left. For positively 
buoyant jet, again reflect figure about a horizontal axis. ( b )  Neutrally buoyant wake for flow 
from left to right. For neutrally buoyant jet, flow is from right to left. For both (a) and ( b ) ,  the 
observer is moving with the structures. Streamwise development of these structures is not shown. 
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moves with these vortices as they convect themselves downwards, the pattern shown 
in figure 6(a)  would be produced. The separatrix surrounding the vortex pair is 
closed. However, the structures possess three-dimensionality and hence there is a net 
divergence of the vector field in this end plane and the separatrix is open as shown in 
figure 6 (b) .  Fluid is entrained into these structures from below the singular stream- 
line labelled G (see also figure 5 ) .  Figures 6 (c) and ( d )  show the conjectured streamline 
patterns on or near the surface of the smoke. 

The analysis which leads to equation (1) is only for two-dimensional flow. Strictly 
speaking, the dislocated saddle in figure 5 (b)  is three-dimensional. Assuming viscous 
diffusion were absent, a zero-thickness vortex sheet would result and we would have 
associated with it a general node of the type given in figure 2 (9) on either side of the 
sheet. One set of such nodes is shown in figure 6 (d ) .  A corresponding set is on the inside 
surface of the tubular sheet and is hidden from view. If the vortex sheet is of finite 
thickness, the dislocated saddle, in the small, becomes a regular constant vorticity 
saddle of the type shown in figure 2 (c) and ( e ) .  The flow then becomes locally two- 
dimensional and a degenerate node of the type given in figure 2 (h) would result and 
would be in a plane inside the sheet. 

Figure 7 (plate 2) shows the smoke pattern and associated vector field of a double- 
sided wake. Unfortunately, the only pattern of this kind which could be produced for 
a sufficient time for the data sampling possemed a split or double eddy a t  the top. 
Figure 8 (a)  shows the ideal smoke pattern as deduced from Perry & Lim (1978) while 
figure 8 ( b )  shows the actual streamline pattern deduced from figure 7(b). An outer 
singular trajectory corresponding with C in figure 5 is absent since the observer is 
moving horizontally. 

We have now sufficient information to deduce the patterns for all flow cases classified 
by Perry & Lim (1978) including the jets. These are summarized schematically in 
figure 9 with the conjectured smoke pattern superimposed (shown shaded). 

Figure lO(a) (plate 3) shows flow over a rivet head (a dome-shaped body attached 
to a boundary). It can be seen from the dye that a single-sided wake structure is 
produced similar to the one shown in figures 5 and 9(a)  except it is inverted. The 
orientation of the loops is due entirely to the sign of the vorticity generated at the 
source and not the result of buoyancy. Figure 10 (b)  shows streaklines and a dislocated 
saddle is evident although streaklines should be interpreted with caution. Like Hunt 
et al. (1978), the authors found that details in the cavity were Reynolds number 
dependent. 

4. Discussion of results 
4.1.  Transport of smoke 

From figure 9 it can be seen that instantaneous streamlines can cross vortex sheets and 
must do so with a discontinuity at the sheet. The initial cylindrical vortex sheet is 
unsteady and can move normal to itself. The smoke which is bounded by this sheet is 
being squeezed backwards relative to the moving observer (in the case of a wake) in 
much the same way as toothpaste would be squeezed along in a very flexible tube until 
finally the tube is squeezed to a very small thickness. All that is finally left after a 
sufficient development is the outer shell where most of the vorticity resides. A great 
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deal of vortex stretching and vorticity cancellation by viscous diffusion must occur 
during this process. The separatrices form instantaneous alleyways of fluid which 
penetrate through the vortex sheet and back up along the smoke. 

The dislocated saddles, which have been smeared by viscous diffusion, are features 
which also appear in the calculated two-dimensional patterns of Corcos & Sherman 
(1976) for the roll-up of an initially plane vortex sheet. The use of constant vorticity 
centres to represent the pattern assumes that vorticity has diffused in the region of the 
roll-up, giving a uniform blob of vorticity. 

Perry & Lim (1978) found that the smoke patterns of coflowing wakes are similar 
to those behind a sphere and so the vector field results should be applicable to spheres 
(see also Achenbach 1974 and Taneda 1978). The deformed ‘smoke tube’ would 
consist of boundary-layer material from the sphere. 

4.2. Entrainment and mixing 
Cantwell et al. (1978) discussed the difficulties with the definition of entrainment and 
mention some alternatives to the conventional definition. The present authors are 
going to use the conventional definition according to Head (1960) and Head & 
Bradshaw (1971), i.0. entrainment is the volume rate of fluid which is infected with 
mean vorticity. In  figure 9 fluid which spirals in towards centres or moves down 
alleyways is often said to be entrained. However, entrainment is possible without this 
process occurring. A simple example of this is the ideal spacially periodic two- 
dimensional Kelvin/Helmholtz-like roll-up of a shear layer. Figures 11 (a ) ,  ( b )  and ( c )  
shows its conjectured progress as it rolls up with separatrices shown. Since the flow is 
two-dimensional foci are not possible by continuity. This is the pattern as seen by an 
observer moving with the eddies. It is growing with time but not with x. There are 
then various ways of defining mean flow and mean vorticity. Here, the mean flow will 
be defined as the spacial average in the x direction and would correspond with a short 
time average for an observer moving very rapidly relative to the structures in the x 
direction. All mean streamlines are then straight and horizontal. Although the shear 
layer possesses a displacement thickness which is growing with time, the streamlines 
are not displaced, i.e. the vertical component of mean velocity is zero since by 
continuity 

v d&* 
u,=dz-  - 0, 

where S* is the displacement thickness defined as 

s* = jom (1 - 6) dx. 

It can be seen that, as the sheet rolls up, the separatrices propagate out through the 
fluid like a wave. The boundaries (shown as A in figure 1 1 c)  define the region where the 
mean streamlines possess mean vorticity and these boundaries are propagating out- 
wards at  some velocity q. Hence the entrainment, i.e. the volume of fluid per unit 
streamwise and spanwise length crossing the boundaries, is 29. This will be referred to 
as entrainment of the first kind. 

The regions shown shaded in figure 11 (b )  are mixing zones. These are defined as 
those regions where trajectories are closed. Any fluid interface in this region will be 
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FIGURE 11. Progress of ideal Kelvin-Helmholtz-like roll-up of vortex sheet. (a) Undisturbed. 
( b )  Initial roll-up. (c )  Almost fully developed. ( d )  Developing shear layer behind a splitter plate. 
( e )  Illustration of Head’s definition of entrainment. 
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stretched into a spiral. Fluid bounded by the separatrices will ultimately acquire 
vorticity by viscous diffusion. As the structures grow, more fluid will be encompassed 
by the mixing zones. If vortex pairing occurs, the mixing zones would grow in a 
‘quantum jump’ since all length scales would be doubled. 

In  three-dimensional flow mixing zones are more difficult to define since it might be 
possible for streamlines to enter regions of vortex sheet roll-up and leave without 
acquiring vorticity by viscous diffusion. 

Returning to the two-dimensional Kelvin-Helmholtz-like roll-ups, the work of 
Winant & Browand (1974) and Brown & Roshko (1974) shows that these actually grow 
linearly with distance as shown in figure 11 ( d ) .  The time-averaged flow relative to an 
observer a t  rest with the origin of the shear layer is shown. The envelope which defines 
the region where mean flow has acquired mean vorticity is shown and fluid which is 
said to be entrained crosses this boundary. Figure 11 (e )  shows how this definition is 
consistent with Head’s (1960) definition. For boundary layers, the angle of the mean 
streamIine at the envelope is d6*/dx,  where 6* is the displacement thickness of the 
structure, whereas the outer boundary of the layer is a t  an angle d6/dx,  where 6 
defines the outer envelope. Assuming that we are in a zero pressure gradient, the 

d entrainment rate V is 
(2) v = U1&J-6*), 

which is the Head relation. It is assumed that the angles mentioned are small. 
Returning to the structures described in 3 3, a three-dimensional envelope could be 

constructed which would look like a fluted cone. Fluid crossing this envelope is said 
to  be entrained. For the flow patterns shown in figure 9, fluid crossing this boundary 
will be referred to as entrainment of the second kind. This would include the fluid 
which moves towards the centres on the centre-plane or fluid which moves along 
alleyways and fluid which moves out in other planes. However, since this pattern is as 
Seen by an observer moving with the structures, an additional volume of fluid is 
entrained because relative to this observer the envelope is propagating out as the 
structures grow with streamwise distance. This is entrainment of the first kind. The 
Head definition has been formulated for a stationary observer looking a t  boundary 
layers and wakes which are two-dimensional in the mean sense but the instantaneous 
flow patterns can be three-dimensional. For such flows if the observer and the structures 
are moving with a velocity U$, then entrainment of the first kind is V, = U6d6/dx. This 
accounts for the outward movement of the envelope relative to the observer. Entrain- 
ment of the second kind due to flow spiralling in towards the centres or moving down 
alleyways will be written as V,. Hence the total entrainment as seen by a moving 
observer is 

(3) 
dS v = U$-&+V,. 

This must be the same for a stationary observer and hence V given by equation (3) 
must be equal to that given by equation (2). This gives a relationship between V, and 
the standard mean flow quantities thus 

dS dS* 
dx d x  

v,= (ul-u$)--u-. (4) 

These equations could be extended to three-dimensional mean flows if the shape of the 
envelope was known. 
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To summarize, there are basically two processes which govern entrainment. These 
are (a) the streamwise or time-wise growth of the envelope within which mean stream- 
lines possess mean vorticity (entrainment of the first kind) and (6) the volume 
of fluid crossing this envelope by vortex induction and displacement thickness 
growth (entrainment of the second kind). The latter process can be seen quite 
clearly in figures 9 (a) and (6). 

5. Conclusions 
The instantaneous flow fields surrounding the artificially stimulated coherent 

structures in nominally axisymmetric coflowing wakes of Perry & Lim have been 
measured. The vector fields were successfully obtained using a conditional sampling 
technique based on the precise phase of the disturbing oscillation. With the aid of 
critical point theory a qualitative description of the flow field has been obtained for all 
the simplest patterns classified by Perry & Lim, i.e. both coflowing jets and wakes. By 
relating these vector fields with the smoke patterns one can obtain an insight into how 
the smoke and vorticity from the source is convected and deformed. The process of 
entrainment of irrotational fluid is revealed very clearly from the vector field 
description. 

This project was supported by the Australian Research Grants Committee and the 
Australian Institute of NucIear Science and Engineering. 
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(b 1 
FIGURE 4. Simple negatively buoyant wake. (a)  Smoke pattern ; ( b )  superimposed photograph 
of smoke pattern and the velocity field. Reynolds number based on outer flow velocity and tube 
diameter (Re) = 400, frequency of vibration f = 8.5 Hz. Velocity of exit from tube very low. 
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(b)  
FIGURE 7.  Neutrally buoyant wake. ( a )  Smoke pattern; ( b )  superimposed photograph of the 

smoke pattern and the velocity field. Re (based on outer flow) = 500, f = 10 Hz. 
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( b )  
FIGURE 10. Flow over a rivet head. (a) Dye pattern. ( b )  Laser cross-section of dye introduced 
from upstream. Note the appearance of dislocated saddle. Reynolds number (based on the 
maximum height of the rivet) = 150. D.S. is a dislocated saddle. 
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